Tag Archives: Optical

Crystal-based Devices — High-power Optical Isolators

The research and application of fiber lasers flourish in recent years. Optical isolators are important devices to ensure the reliability of fiber lasers. Depending on the actual applications, different types of optical isolator are employed. For some applications under relatively low optical power, wedge-type in-line optical isolator is employed, just with more consideration on heat dissipation. While for some applications under high optical power, BD-type in-line optical isolator is employed instead of wedge-type. The reason is that the FR for telecom applications can’t be used anymore.

Continue reading

Crystal-based Devices—Optical Isolators

Optical isolators are widely used in optical fiber communication systems, optical fiber sensing systems and fiber lasers. The basic and common principle for optical isolators is Faraday effect. However, the device structures and characteristics are variable, which are detailed as follow.

Free-space Optical Isolator
The structure of a free-space optical isolator is shown in Fig.1, which comprises two polarizers, a Faraday rotator (FR) and a magnet ring. The transmission axes of the two polarizers are aligned with 45º angle and the FR has a fixed rotatory angle of 45º in a saturated magnetic field.

Fig.1 Structure of free-space optical isolator
Fig.1 Structure of free-space optical isolator
Continue reading

WDM Devices — AWG with Flat Response (2)

In the first chapter (WDM Devices — AWG with Flat Response), the reasons for the Flat Response required, cause for Gaussian Passband, and three main passband optimization proposals are introduced in brief. This chapter is about two other passband optimization proposals.

4) Shaping of Phase Transfer Function
Let’s review the proposals of adding MMI at the input and taper at the output. The core feature is to flatten the focused optical field undefined or the eigen mode undefinedof the output waveguide. Thus the correlation function undefined between the two optical fields is flattened. Anyway, the correlation between two mismatched optical fields will introduce excess power loss. The more is the mismatch, the more is the power loss. The AWG designers need to balance the passband width and the loss penalty.

Continue reading

WDM Devices — AWG with Flat Response

Why Is Flat Response Required?
In the all optical network (AON), the optical signals passed tens of nodes before reaching the destination node, as shown in Fig.1. The ROADM nodes are usually composed of wavelength selective switches (WSS), multiplexers/demultiplexers and optical switches. The wavelength multiplexers/demultiplexers are optical filters, including TFF-based WDM devices, arrayed waveguide gratings (AWG) and optical interleavers.

Continue reading