OFC2020: How has fiber optic communication changed us?

In OFC 2020, the most exciting moment must be the commermorative event. Fifty years ago, two breakthrough technologies that laid the foundation for this year’s optical communications were born: low-loss optical fiber and room-temperature semiconductor lasers. For the first time in the past 20 years, OFC arranged a special celebration after the morning conference speech. David F. Welch, Chief Innovation Officer of Infinera, who will lead the audience to recall the 50 years of optical fiber communications and look forward to the future of optical communications.

Continue reading

HYC New Product – 1×N MEMS Optical Switch

With the rapid development of optical fiber, the traditional communication devices with electricity as the core is hardly to meet the needs of high-speed and large-capacity optical communication network. MEMS optical switch has become one of the important devices in all optical communication network due to its small size, easy integration and large capacity.

MEMS optical switch is based on Micro-Electro-Mechanical System(MEMS) technology, using the micromirrors to control and switch the optical path. Its function is shown in the following figure:

Continue reading

Crystal-based Devices — High-power Optical Isolators

The research and application of fiber lasers flourish in recent years. Optical isolators are important devices to ensure the reliability of fiber lasers. Depending on the actual applications, different types of optical isolator are employed. For some applications under relatively low optical power, wedge-type in-line optical isolator is employed, just with more consideration on heat dissipation. While for some applications under high optical power, BD-type in-line optical isolator is employed instead of wedge-type. The reason is that the FR for telecom applications can’t be used anymore.

Continue reading

Crystal-based Devices— Basics for Crystal Optics

Birefringent crystals are widely used to fabricate optical passive devices such as optical isolator, optical circulator, polarization beam combiner/splitter, optical interleaver. The mostly used crystals are uniaxial, such as YVO4 and LiNbO3.

Birefringence in Uniaxial Crystal
Wave normal K is the normal of equalphase surface which describes the transmission of wave phase. Ray S is the normal of wave front which describes the transmission of optical energy. When light incidents on the air-crystal (uniaxial) interface, there are usually two refractive rays, o-ray So and e-ray Se. The direction of each ray depends on the direction of corresponding wave normal.

Continue reading

Crystal-based Devices—Optical Isolators

Optical isolators are widely used in optical fiber communication systems, optical fiber sensing systems and fiber lasers. The basic and common principle for optical isolators is Faraday effect. However, the device structures and characteristics are variable, which are detailed as follow.

Free-space Optical Isolator
The structure of a free-space optical isolator is shown in Fig.1, which comprises two polarizers, a Faraday rotator (FR) and a magnet ring. The transmission axes of the two polarizers are aligned with 45º angle and the FR has a fixed rotatory angle of 45º in a saturated magnetic field.

Fig.1 Structure of free-space optical isolator
Fig.1 Structure of free-space optical isolator
Continue reading

360° Ferrule Rotation Adjustable Polarization Maintaining(PM) Optical Fiber Connector

What is Polarization Maintaining(PM) fiber?

Theoretically, the fiber is a circular core which should not produce birefringence, and the polarization state in such a fiber will not change during transmission. In practice, there is always some external forces or other reasons which makes the fiber uneven or curved, and will cause a small amount of birefringence. When the fiber is subject to any external interference, such as wavelength, bending of the fiber, temperature and other factors, the polarization state of light will become chaotic when transmitted in polarization-maintaining fiber.

Continue reading